
AI
Searching

Blind search – keep moving randomly till reach goal, independent of the domain
depth first, breadth-first, iterative-deepening

Heuristic – utilities domain specific features, best first A* i.e. Finding a word in a
dictionary we know it starts with say Z so look there first

Local – if only finding goal state matters i.e. Situations, hill-climbing, simulate
annealing, genetic algorithms

Blind Search
Tree Search – just go down the tree till hit sumthing good

Strategy's – Order of expansion
completeness – always find a solution if its there
time complexity – number of nodes generated / expanded how long will it

take
space complexity – maximum number of nodes in memory at any one time
optimality – does it always find the least time cost solution ie fastest

time and space complexity measured by
b = maximum branching factor
d = depth of best solution
m = maximum tree depth

Breadth first
work along each level of the tree
expand shallowest unexpanded node
fringe as FIFO queue

has to store all nodes in memory

Depth first
work down to the bottom of each branch
expand deepest unexpanded nodes
fringe as LIFO queue

Not optimal can get stuck on infinite paths
Less memory than Breadth first

Iterative Deepening
effectively breadth first but take advantage of depth search by doing a
depth search to iteratively increasing depths

Open and Closed nodes
Remember visited nodes to stop infinite loops

Heuristic Search
Use other known knowledge to search for solutions

Best first search – pick the seemingly best node among the search nodes based on an

evaluation function that works for the data.

i.e. Search inwards towards a goal
i.e. With a compass

A* search

cost (s->n) called g(n)
cost (n->g) called h(n)

g(n) is path cost to n
h(n) is estimate of least cost path from n to g
f(n) = g(n) + h(n) estimated cost of cheapest solutions
among search nodes select node where f(n) is lowest

depending on h(n) this can be complete and optimal
if h(n) =< true cost(n->g)

for A* if h(n) is admissible then its optimal

complete, unless infinite many nodes f=<f(g)
time, exponential
space, needs to store all nodes
optimal, yes

Iterative Improvement
i.e. The chess game

Hill Climbing
trying to find the shallowest part of the sea using a probe
step along if its increasing keep going, if it starts going down go back and try
and find highest

can miss highest and home in on a smaller point

Simulated Annealing
escape from local maximums by allowing some bad moves, have a probability
that you can move

used a lot as it allows solutions to hard problems to be effectively guessed /
worked towards

P(x) ∞ exp (-E(x) / T)

T slowly reaches so that it finds goal

Genetic algorithms
Pick 2 parents
apply mutation bit flip with probability
replace population with offspring

1 point crossover just cut and join the 2 strings somewhere

selection
give individuals chances and place these on a roulette wheel then spin
the wheel n times to get n individuals

works on local search in uncertain conditions

MiniMax search
Max is player A, aims to pick best moves
Min is player B, aims to pick best moves to minimise A's advantage

The faster the computer the deeper it can look

Cant look forever, if opponent looks 1 more than us then we have no chance,
especially if the opponent notices this.

Optimise
take into account board size

Alpha-Beta pruning
Alpha lower bound on node evaluations (worst we can do)

Associate with max nodes
Never decreases

Beta represents the upper bound
Associate with min nodes
Never increases

